Copied to
clipboard

G = C22×A4⋊C4order 192 = 26·3

Direct product of C22 and A4⋊C4

direct product, non-abelian, soluble, monomial

Aliases: C22×A4⋊C4, C25.2S3, C23.22S4, C243Dic3, C24.11D6, C23⋊(C2×Dic3), (C22×A4)⋊3C4, A42(C22×C4), C2.2(C22×S4), (C2×A4).9C23, (C23×A4).3C2, C22.31(C2×S4), C22⋊(C22×Dic3), C23.9(C22×S3), (C22×A4).12C22, (C2×A4)⋊2(C2×C4), SmallGroup(192,1487)

Series: Derived Chief Lower central Upper central

C1C22A4 — C22×A4⋊C4
C1C22A4C2×A4A4⋊C4C2×A4⋊C4 — C22×A4⋊C4
A4 — C22×A4⋊C4
C1C23

Generators and relations for C22×A4⋊C4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e3=f4=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, ece-1=fcf-1=cd=dc, ede-1=c, df=fd, fef-1=e-1 >

Subgroups: 902 in 277 conjugacy classes, 59 normal (10 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C2×C4, C23, C23, C23, Dic3, A4, C2×C6, C22⋊C4, C22×C4, C24, C24, C2×Dic3, C2×A4, C2×A4, C22×C6, C2×C22⋊C4, C23×C4, C25, A4⋊C4, C22×Dic3, C22×A4, C22×C22⋊C4, C2×A4⋊C4, C23×A4, C22×A4⋊C4
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, C2×Dic3, S4, C22×S3, A4⋊C4, C22×Dic3, C2×S4, C2×A4⋊C4, C22×S4, C22×A4⋊C4

Smallest permutation representation of C22×A4⋊C4
On 48 points
Generators in S48
(1 33)(2 34)(3 35)(4 36)(5 27)(6 28)(7 25)(8 26)(9 31)(10 32)(11 29)(12 30)(13 43)(14 44)(15 41)(16 42)(17 39)(18 40)(19 37)(20 38)(21 47)(22 48)(23 45)(24 46)
(1 29)(2 30)(3 31)(4 32)(5 47)(6 48)(7 45)(8 46)(9 35)(10 36)(11 33)(12 34)(13 18)(14 19)(15 20)(16 17)(21 27)(22 28)(23 25)(24 26)(37 44)(38 41)(39 42)(40 43)
(1 3)(2 12)(4 10)(5 21)(6 24)(7 23)(8 22)(9 11)(13 38)(14 16)(15 40)(17 19)(18 41)(20 43)(25 45)(26 48)(27 47)(28 46)(29 31)(30 34)(32 36)(33 35)(37 39)(42 44)
(1 9)(2 10)(3 11)(4 12)(5 7)(6 8)(13 40)(14 37)(15 38)(16 39)(17 42)(18 43)(19 44)(20 41)(21 23)(22 24)(25 27)(26 28)(29 35)(30 36)(31 33)(32 34)(45 47)(46 48)
(1 27 15)(2 16 28)(3 25 13)(4 14 26)(5 41 33)(6 34 42)(7 43 35)(8 36 44)(9 45 40)(10 37 46)(11 47 38)(12 39 48)(17 22 30)(18 31 23)(19 24 32)(20 29 21)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)

G:=sub<Sym(48)| (1,33)(2,34)(3,35)(4,36)(5,27)(6,28)(7,25)(8,26)(9,31)(10,32)(11,29)(12,30)(13,43)(14,44)(15,41)(16,42)(17,39)(18,40)(19,37)(20,38)(21,47)(22,48)(23,45)(24,46), (1,29)(2,30)(3,31)(4,32)(5,47)(6,48)(7,45)(8,46)(9,35)(10,36)(11,33)(12,34)(13,18)(14,19)(15,20)(16,17)(21,27)(22,28)(23,25)(24,26)(37,44)(38,41)(39,42)(40,43), (1,3)(2,12)(4,10)(5,21)(6,24)(7,23)(8,22)(9,11)(13,38)(14,16)(15,40)(17,19)(18,41)(20,43)(25,45)(26,48)(27,47)(28,46)(29,31)(30,34)(32,36)(33,35)(37,39)(42,44), (1,9)(2,10)(3,11)(4,12)(5,7)(6,8)(13,40)(14,37)(15,38)(16,39)(17,42)(18,43)(19,44)(20,41)(21,23)(22,24)(25,27)(26,28)(29,35)(30,36)(31,33)(32,34)(45,47)(46,48), (1,27,15)(2,16,28)(3,25,13)(4,14,26)(5,41,33)(6,34,42)(7,43,35)(8,36,44)(9,45,40)(10,37,46)(11,47,38)(12,39,48)(17,22,30)(18,31,23)(19,24,32)(20,29,21), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)>;

G:=Group( (1,33)(2,34)(3,35)(4,36)(5,27)(6,28)(7,25)(8,26)(9,31)(10,32)(11,29)(12,30)(13,43)(14,44)(15,41)(16,42)(17,39)(18,40)(19,37)(20,38)(21,47)(22,48)(23,45)(24,46), (1,29)(2,30)(3,31)(4,32)(5,47)(6,48)(7,45)(8,46)(9,35)(10,36)(11,33)(12,34)(13,18)(14,19)(15,20)(16,17)(21,27)(22,28)(23,25)(24,26)(37,44)(38,41)(39,42)(40,43), (1,3)(2,12)(4,10)(5,21)(6,24)(7,23)(8,22)(9,11)(13,38)(14,16)(15,40)(17,19)(18,41)(20,43)(25,45)(26,48)(27,47)(28,46)(29,31)(30,34)(32,36)(33,35)(37,39)(42,44), (1,9)(2,10)(3,11)(4,12)(5,7)(6,8)(13,40)(14,37)(15,38)(16,39)(17,42)(18,43)(19,44)(20,41)(21,23)(22,24)(25,27)(26,28)(29,35)(30,36)(31,33)(32,34)(45,47)(46,48), (1,27,15)(2,16,28)(3,25,13)(4,14,26)(5,41,33)(6,34,42)(7,43,35)(8,36,44)(9,45,40)(10,37,46)(11,47,38)(12,39,48)(17,22,30)(18,31,23)(19,24,32)(20,29,21), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48) );

G=PermutationGroup([[(1,33),(2,34),(3,35),(4,36),(5,27),(6,28),(7,25),(8,26),(9,31),(10,32),(11,29),(12,30),(13,43),(14,44),(15,41),(16,42),(17,39),(18,40),(19,37),(20,38),(21,47),(22,48),(23,45),(24,46)], [(1,29),(2,30),(3,31),(4,32),(5,47),(6,48),(7,45),(8,46),(9,35),(10,36),(11,33),(12,34),(13,18),(14,19),(15,20),(16,17),(21,27),(22,28),(23,25),(24,26),(37,44),(38,41),(39,42),(40,43)], [(1,3),(2,12),(4,10),(5,21),(6,24),(7,23),(8,22),(9,11),(13,38),(14,16),(15,40),(17,19),(18,41),(20,43),(25,45),(26,48),(27,47),(28,46),(29,31),(30,34),(32,36),(33,35),(37,39),(42,44)], [(1,9),(2,10),(3,11),(4,12),(5,7),(6,8),(13,40),(14,37),(15,38),(16,39),(17,42),(18,43),(19,44),(20,41),(21,23),(22,24),(25,27),(26,28),(29,35),(30,36),(31,33),(32,34),(45,47),(46,48)], [(1,27,15),(2,16,28),(3,25,13),(4,14,26),(5,41,33),(6,34,42),(7,43,35),(8,36,44),(9,45,40),(10,37,46),(11,47,38),(12,39,48),(17,22,30),(18,31,23),(19,24,32),(20,29,21)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)]])

40 conjugacy classes

class 1 2A···2G2H···2O 3 4A···4P6A···6G
order12···22···234···46···6
size11···13···386···68···8

40 irreducible representations

dim1111222333
type++++-+++
imageC1C2C2C4S3Dic3D6S4A4⋊C4C2×S4
kernelC22×A4⋊C4C2×A4⋊C4C23×A4C22×A4C25C24C24C23C22C22
# reps1618143286

Matrix representation of C22×A4⋊C4 in GL7(𝔽13)

12000000
01200000
0010000
0001000
00001200
00000120
00000012
,
12000000
01200000
0010000
0001000
0000100
0000010
0000001
,
1000000
0100000
0010000
0001000
00001200
00000120
0000001
,
1000000
0100000
0010000
0001000
0000100
00000120
00000012
,
3000000
0900000
0030000
0009000
0000001
0000100
0000010
,
0800000
8000000
0008000
0080000
0000500
0000005
0000050

G:=sub<GL(7,GF(13))| [12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12],[3,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0],[0,8,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,8,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,5,0,0,0,0,0,5,0] >;

C22×A4⋊C4 in GAP, Magma, Sage, TeX

C_2^2\times A_4\rtimes C_4
% in TeX

G:=Group("C2^2xA4:C4");
// GroupNames label

G:=SmallGroup(192,1487);
// by ID

G=gap.SmallGroup(192,1487);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,56,1124,4037,285,2358,475]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^3=f^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*c*f^-1=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽